USN-5793-1: Linux kernel vulnerabilities

6 January 2023

Several security issues were fixed in the Linux kernel.

Reduce your security exposure

Ubuntu Pro provides ten-year security coverage to 25,000+ packages in Main and Universe repositories, and it is free for up to five machines.

Learn more about Ubuntu Pro

Releases

Packages

Details

It was discovered that the io_uring subsystem in the Linux kernel did not
properly perform reference counting in some situations, leading to a use-
after-free vulnerability. A local attacker could use this to cause a denial
of service (system crash) or possibly execute arbitrary code.
(CVE-2022-3910)

It was discovered that a race condition existed in the Android Binder IPC
subsystem in the Linux kernel, leading to a use-after-free vulnerability. A
local attacker could use this to cause a denial of service (system crash)
or possibly execute arbitrary code. (CVE-2022-20421)

David Leadbeater discovered that the netfilter IRC protocol tracking
implementation in the Linux Kernel incorrectly handled certain message
payloads in some situations. A remote attacker could possibly use this to
cause a denial of service or bypass firewall filtering. (CVE-2022-2663)

It was discovered that the sound subsystem in the Linux kernel contained a
race condition in some situations. A local attacker could use this to cause
a denial of service (system crash). (CVE-2022-3303)

It was discovered that the Sunplus Ethernet driver in the Linux kernel
contained a read-after-free vulnerability. An attacker could possibly use
this to expose sensitive information (kernel memory) (CVE-2022-3541)

It was discovered that a memory leak existed in the Unix domain socket
implementation of the Linux kernel. A local attacker could use this to
cause a denial of service (memory exhaustion). (CVE-2022-3543)

It was discovered that the NILFS2 file system implementation in the Linux
kernel did not properly deallocate memory in certain error conditions. An
attacker could use this to cause a denial of service (memory exhaustion).
(CVE-2022-3544, CVE-2022-3646)

Gwnaun Jung discovered that the SFB packet scheduling implementation in the
Linux kernel contained a use-after-free vulnerability. A local attacker
could use this to cause a denial of service (system crash) or possibly
execute arbitrary code. (CVE-2022-3586)

It was discovered that the hugetlb implementation in the Linux kernel
contained a race condition in some situations. A local attacker could use
this to cause a denial of service (system crash) or expose sensitive
information (kernel memory). (CVE-2022-3623)

Khalid Masum discovered that the NILFS2 file system implementation in the
Linux kernel did not properly handle certain error conditions, leading to a
use-after-free vulnerability. A local attacker could use this to cause a
denial of service or possibly execute arbitrary code. (CVE-2022-3649)

It was discovered that a race condition existed in the MCTP implementation
in the Linux kernel, leading to a use-after-free vulnerability. A local
attacker could use this to cause a denial of service (system crash) or
possibly execute arbitrary code. (CVE-2022-3977)

It was discovered that a race condition existed in the EFI capsule loader
driver in the Linux kernel, leading to a use-after-free vulnerability. A
local attacker could use this to cause a denial of service (system crash)
or possibly execute arbitrary code. (CVE-2022-40307)

Zheng Wang and Zhuorao Yang discovered that the RealTek RTL8712U wireless
driver in the Linux kernel contained a use-after-free vulnerability. A
local attacker could use this to cause a denial of service (system crash)
or possibly execute arbitrary code. (CVE-2022-4095)

It was discovered that a race condition existed in the SMSC UFX USB driver
implementation in the Linux kernel, leading to a use-after-free
vulnerability. A physically proximate attacker could use this to cause a
denial of service (system crash) or possibly execute arbitrary code.
(CVE-2022-41849)

It was discovered that a race condition existed in the Roccat HID driver in
the Linux kernel, leading to a use-after-free vulnerability. A local
attacker could use this to cause a denial of service (system crash) or
possibly execute arbitrary code. (CVE-2022-41850)

It was discovered that the USB monitoring (usbmon) component in the Linux
kernel did not properly set permissions on memory mapped in to user space
processes. A local attacker could use this to cause a denial of service
(system crash) or possibly execute arbitrary code. (CVE-2022-43750)

Reduce your security exposure

Ubuntu Pro provides ten-year security coverage to 25,000+ packages in Main and Universe repositories, and it is free for up to five machines.

Learn more about Ubuntu Pro

Update instructions

The problem can be corrected by updating your system to the following package versions:

Ubuntu 22.10

After a standard system update you need to reboot your computer to make
all the necessary changes.

ATTENTION: Due to an unavoidable ABI change the kernel updates have
been given a new version number, which requires you to recompile and
reinstall all third party kernel modules you might have installed.
Unless you manually uninstalled the standard kernel metapackages
(e.g. linux-generic, linux-generic-lts-RELEASE, linux-virtual,
linux-powerpc), a standard system upgrade will automatically perform
this as well.