Your submission was sent successfully! Close

Thank you for contacting us. A member of our team will be in touch shortly. Close

You have successfully unsubscribed! Close

Thank you for signing up for our newsletter!
In these regular emails you will find the latest updates about Ubuntu and upcoming events where you can meet our team.Close

CVE-2023-28842

Publication date 4 April 2023

Last updated 24 July 2024


Ubuntu priority

Cvss 3 Severity Score

6.8 · Medium

Score breakdown

Moby) is an open source container framework developed by Docker Inc. that is distributed as Docker, Mirantis Container Runtime, and various other downstream projects/products. The Moby daemon component (`dockerd`), which is developed as moby/moby is commonly referred to as *Docker*. Swarm Mode, which is compiled in and delivered by default in `dockerd` and is thus present in most major Moby downstreams, is a simple, built-in container orchestrator that is implemented through a combination of SwarmKit and supporting network code. The `overlay` network driver is a core feature of Swarm Mode, providing isolated virtual LANs that allow communication between containers and services across the cluster. This driver is an implementation/user of VXLAN, which encapsulates link-layer (Ethernet) frames in UDP datagrams that tag the frame with the VXLAN metadata, including a VXLAN Network ID (VNI) that identifies the originating overlay network. In addition, the overlay network driver supports an optional, off-by-default encrypted mode, which is especially useful when VXLAN packets traverses an untrusted network between nodes. Encrypted overlay networks function by encapsulating the VXLAN datagrams through the use of the IPsec Encapsulating Security Payload protocol in Transport mode. By deploying IPSec encapsulation, encrypted overlay networks gain the additional properties of source authentication through cryptographic proof, data integrity through check-summing, and confidentiality through encryption. When setting an endpoint up on an encrypted overlay network, Moby installs three iptables (Linux kernel firewall) rules that enforce both incoming and outgoing IPSec. These rules rely on the `u32` iptables extension provided by the `xt_u32` kernel module to directly filter on a VXLAN packet's VNI field, so that IPSec guarantees can be enforced on encrypted overlay networks without interfering with other overlay networks or other users of VXLAN. The `overlay` driver dynamically and lazily defines the kernel configuration for the VXLAN network on each node as containers are attached and detached. Routes and encryption parameters are only defined for destination nodes that participate in the network. The iptables rules that prevent encrypted overlay networks from accepting unencrypted packets are not created until a peer is available with which to communicate. Encrypted overlay networks silently accept cleartext VXLAN datagrams that are tagged with the VNI of an encrypted overlay network. As a result, it is possible to inject arbitrary Ethernet frames into the encrypted overlay network by encapsulating them in VXLAN datagrams. The implications of this can be quite dire, and GHSA-vwm3-crmr-xfxw should be referenced for a deeper exploration. Patches are available in Moby releases 23.0.3, and 20.10.24. As Mirantis Container Runtime's 20.10 releases are numbered differently, users of that platform should update to 20.10.16. Some workarounds are available. In multi-node clusters, deploy a global ‘pause’ container for each encrypted overlay network, on every node. For a single-node cluster, do not use overlay networks of any sort. Bridge networks provide the same connectivity on a single node and have no multi-node features. The Swarm ingress feature is implemented using an overlay network, but can be disabled by publishing ports in `host` mode instead of `ingress` mode (allowing the use of an external load balancer), and removing the `ingress` network. If encrypted overlay networks are in exclusive use, block UDP port 4789 from traffic that has not been validated by IPSec.

Status

Package Ubuntu Release Status
docker 24.10 oracular
Needs evaluation
24.04 LTS noble
Needs evaluation
23.10 mantic Ignored end of life, was needs-triage
23.04 lunar Ignored end of life, was needs-triage
22.10 kinetic Ignored end of life, was needs-triage
22.04 LTS jammy
Needs evaluation
20.04 LTS focal
Needs evaluation
18.04 LTS bionic
Needs evaluation
16.04 LTS xenial
Needs evaluation
14.04 LTS trusty
Needs evaluation
python-docker 24.10 oracular
Needs evaluation
24.04 LTS noble
Needs evaluation
23.10 mantic Ignored end of life, was needs-triage
23.04 lunar Ignored end of life, was needs-triage
22.10 kinetic Ignored end of life, was needs-triage
22.04 LTS jammy
Needs evaluation
20.04 LTS focal
Needs evaluation
18.04 LTS bionic
Needs evaluation
16.04 LTS xenial
Needs evaluation
14.04 LTS trusty Ignored end of standard support

Severity score breakdown

Parameter Value
Base score 6.8 · Medium
Attack vector Network
Attack complexity High
Privileges required None
User interaction None
Scope Changed
Confidentiality None
Integrity impact High
Availability impact None
Vector CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:C/C:N/I:H/A:N