Need to set up servers in remote locations?

MAAS - bare metal provisioning with top-of-the-rack switch - remote location server set up

Use bare metal provisioning with a top-of-the-rack switch

When deploying a small footprint environment such as edge computing sites, 5G low latency services, a site support cabinet or baseband unit, its critical to establish the optimal number of physical servers needed for set up. While several approaches exist, bare metal provisioning through KVM can often be the most reliable option. Here’s why.

For every physical server in such a constrained physical environment, there is an associated cost.

In the case of an edge deployment, this cost can be measured in (among other properties):

  • Capital and operational expenses
  • Power usage
  • Dissipated heat
  • The actual real estate it occupies

Ways to set up servers in remote locations

One approach would be to have a dedicated server shipped to every remote location to act as an infrastructure node. Typically this would require an additional node (or committed shared resources) which might not align with remote site footprint constraints.

This approach might introduce unnecessary latency and delays in server provisioning

Another option is stretching the provisioning and management network across WAN and provisioning all the servers from a central location. This approach might, however, introduce unnecessary latency and delays in server provisioning. It also requires quite sophisticated network configuration to account for security, reliability and scale of remote site deployments.

So what other options exist? What is the common infrastructure component always present in every remote location? The answer is quite straightforward – in every single site one needs to provide basic network connectivity through a top-of-the-rack/site switch. It’s this critical component that enables servers to communicate with the rest of the network and provide required functions such as application servers, VNFs, container and virtualisation platforms.

How do I re-purpose nodes to provision different operating systems?

Modern switches can run Linux as their underlying operating system, enabling infrastructure operators to run applications directly on these top-of-the-rack devices either through KVM or snaps support.

A great example of a workload that can run on a top-of-the-rack switch is a bare metal provisioning solution such as MAAS. By deploying MAAS we can solve the system provisioning challenge without unnecessary complexity. By running a lightweight version of MAAS on a top-of-the-rack switch, we reduce friction in small footprint environments as well as providing an open API-driven way to provision and repurpose nodes in every remote location. This enables not only fast and efficient server provisioning but also eliminates drawbacks of other alternatives mentioned above.

Contact us to learn more

Ubuntu cloud

Ubuntu offers all the training, software infrastructure, tools, services and support you need for your public and private clouds.

Newsletter signup

Select topics you’re
interested in

In submitting this form, I confirm that I have read and agree to Canonical’s Privacy Notice and Privacy Policy.

Related posts

Provisioning ESXi with MAAS: An overview

MAAS has supported provisioning ESXi starting from MAAS 2.5. However, MAAS 2.6 has expanded its support and provides new features that significantly improves the provisioning experience. What is supported? The support MAAS provides for provisioning an …

BT turns to Canonical Ubuntu to enable next generation 5G Cloud Core

Today, Canonical announces its Charmed OpenStack on Ubuntu has been selected by BT as a key component of its next generation 5G Core. Canonical, the company behind Ubuntu, will provide the open source virtual infrastructure manager …

Deploying Kubernetes at the edge – Part I: building blocks

Edge computing continues to gain momentum to help solve unique challenges across telco, media, transportation, logistics, agricultural and other market segments. If you are new to edge computing architectures, of which there are several, the following …