Kubeflow at KubeCon Europe 2019 in Barcelona

Kubeflow, the Kubernetes native application for AI and Machine Learning, continues to accelerate feature additions and community growth. The community has released two new versions since the last Kubecon – 0.4 in January and 0.5 in April – and is currently working on the 0.6 release, to be released in July. The key features in each release are briefly discussed below.

Kubeflow at Kubecon

For those attending KubeCon + CloudNativeCon Europe 2019 in Barcelona, you can learn more about Kubeflow and how to apply it to your business in the following sessions:

TUESDAY, May 21

14:00Kubernetes the New Research Platform
– Lindsey Tulloch, Brock University & Bob Killen, University of Michigan
14:00Tutorial: Introduction to Kubeflow Pipelines
– Michelle Casbon, Dan Sanche, Dan Anghel, & Michal Zylinski, Google
15:55KubeFlow BoF (Birds of a Feather)
– David Aronchick, Microsoft & Yaron Haviv, Iguazio

WEDNESDAY, May 22

11:55Towards Kubeflow 1.0, Bringing a Cloud Native Platform For ML to Kubernetes
– David Aronchick, Microsoft & Jeremy Lewi, Google
14:00Building Cross-Cloud ML Pipelines with Kubeflow with Spark & Tensorflow
– Holden Karau, Google & Trevor Grant, IBM
14:50Managing Machine Learning in Production with Kubeflow and DevOps
– David Aronchick, Microsoft

THURSDAY, May 23

11:55A Tale of Two Worlds: Canary-Testing for Both ML Models and Microservices
– Jörg Schad, ArangoDB & Vincent Lesierse, Vamp.io
14:00Moving People and Products with Machine Learning on Kubeflow
– Jeremy Lewi, Google & Willem Pienaar, GO-JEK
14:50Economics and Best Practices of Running AI/ML Workloads on Kubernetes
– Maulin Patel, Google & Yaron Haviv, Iguazio

Come by the Canonical booth to learn how to get started with Kubeflow quickly and easily – on Ubuntu with Microk8s, and on Windows or macOS with Multipass and Microk8s.


What’s in Kubeflow 0.5?

  • This is a summary of some of the key features:
  • UI Improvements – new Central Dashboard and a new sidebar navigation
  • JupyterHub Improvements – launch multiple notebooks, attach volume
  • Fairing Python Library – build, train, and deploy models from notebooks or IDE
  • Katib (hyperparameter) Improvements – more generic, updated CRD, better status
  • KFCTL binary (configure and platform deploy). (https://deploy.kubeflow.cloud/)
  • Pipelines Persistence (upgrade or reinstall)
  • 150+ closed issues and 250+ merged PRs

You can learn more about the 0.5 release from the Kubeflow blog on 0.5.

What’s in Kubeflow 0.4?

  • An updated JupyterHub UI that makes it easy to spawn notebooks with Persistent Volume Claims (PVCs).
  • An alpha release of fairing, a python library that simplifies the build and train process for data scientists – they can start training jobs directly from a notebook or IDE.
  • An initial release of a Custom Resource Definition (CRD) for managing Jupyter notebooks. You can use kubectl to create notebook containers.
  • Kubeflow Pipelines for orchestrating ML workflows, which speeds the process of productizing models by reusing pipelines with different datasets or updated data.
  • Katib support for TFJob, which makes it easier to tune models and compare performance with different hyper-parameters.
  • Beta versions of the TFJob and PyTorch operators, which enable data scientists to program their training jobs against a more stable API and to more easily switch between training frameworks.

You can learn more about the 0.4 release from the Kubeflow blog on 0.4.

Learn more about Kubeflow

There is a wealth of information at kubeflow.org, this includes docs, blogs, and examples. In addition, you can go to ubuntu.com/ai/install to get started quickly.

kubeflow logo

Run Kubeflow anywhere, easily

With Charmed Kubeflow, deployment and operations of Kubeflow are easy for any scenario.

Charmed Kubeflow is a collection of Python operators that define integration of the apps inside Kubeflow, like katib or pipelines-ui.

Use Kubeflow on-prem, desktop, edge, public cloud and multi-cloud.

Learn more about Charmed Kubeflow ›

kubeflow logo

What is Kubeflow?

Kubeflow makes deployments of Machine Learning workflows on Kubernetes simple, portable and scalable.

Kubeflow is the machine learning toolkit for Kubernetes. It extends Kubernetes ability to run independent and configurable steps, with machine learning specific frameworks and libraries.

Learn more about Kubeflow ›

kubeflow logo

Install Kubeflow

The Kubeflow project is dedicated to making deployments of machine learning workflows on Kubernetes simple, portable and scalable.

You can install Kubeflow on your workstation, local server or public cloud VM. It is easy to install with MicroK8s on any of these environments and can be scaled to high-availability.

Install Kubeflow ›

Newsletter signup

Select topics you’re
interested in

In submitting this form, I confirm that I have read and agree to Canonical’s Privacy Notice and Privacy Policy.

Related posts

HP Z series on Ubuntu – AI development on enterprise workstations, now in your remote office

Today, HP announced the launch of its Z series of laptops and workstations certified with Ubuntu 20.04 LTS, the latest additions to their popular professional...

Canonical at KubeCon EU 2020: our first virtual KubeCon experience

Another great KubeCon has recently come to an end – which is nothing less than what we expected. After all, that’s why Canonical and Ubuntu have been...

Kubernetes vs Docker

In an era where container technologies have taken the industry by storm, one of the most common online searches on the topic of containers is ‘Kubernetes vs...