Your submission was sent successfully! Close

You have successfully unsubscribed! Close

Machine Learning Operations (MLOps): Deploy at Scale

Alex Cattle

on 10 September 2019

Artificial Intelligence and Machine Learning adoption in the enterprise is exploding from Silicon Valley to Wall Street with diverse use cases ranging from the analysis of customer behaviour and purchase cycles to diagnosing medical conditions.

Following on from our webinar ‘Getting started with AI’, this webinar will dive into what success looks like when deploying machine learning models, including training, at scale. The key topics are:

  • Automatic Workflow Orchestration
  • ML Pipeline development
  • Kubernetes / Kubeflow Integration
  • On-device Machine Learning, Edge Inference and Model Federation
  • On-prem to cloud, on-demand extensibility
  • Scale-out model serving and inference

This webinar will detail recent advancements in these areas alongside providing actionable insights for viewers to apply to their AI/ML efforts!

Watch the webinar

kubeflow logo

Run Kubeflow anywhere, easily

With Charmed Kubeflow, deployment and operations of Kubeflow are easy for any scenario.

Charmed Kubeflow is a collection of Python operators that define integration of the apps inside Kubeflow, like katib or pipelines-ui.

Use Kubeflow on-prem, desktop, edge, public cloud and multi-cloud.

Learn more about Charmed Kubeflow ›

kubeflow logo

What is Kubeflow?

Kubeflow makes deployments of Machine Learning workflows on Kubernetes simple, portable and scalable.

Kubeflow is the machine learning toolkit for Kubernetes. It extends Kubernetes ability to run independent and configurable steps, with machine learning specific frameworks and libraries.

Learn more about Kubeflow ›

kubeflow logo

Install Kubeflow

The Kubeflow project is dedicated to making deployments of machine learning workflows on Kubernetes simple, portable and scalable.

You can install Kubeflow on your workstation, local server or public cloud VM. It is easy to install with MicroK8s on any of these environments and can be scaled to high-availability.

Install Kubeflow ›

Newsletter signup

Select topics you're
interested in

In submitting this form, I confirm that I have read and agree to Canonical's Privacy Notice and Privacy Policy.

Related posts

From model-centric to data-centric MLOps

MLOps (short for machine learning operations) is slowly evolving into an independent approach to the machine learning lifecycle that includes all steps – from...

Hybrid cloud infrastructure modernisation

Public clouds enabled digital transformation at unprecedented speed. But their operational costs over time can be exacting as compute needs increase. Hybrid...

What is MLOps?

MLOps is the short term for machine learning operations and it represents a set of practices that aim to simplify workflow processes and automate machine...